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The Weyl and Minkowski problems are two inspiring sources for the theory of Monge-
Ampère equation and fully nonlinear equations in general. The seminal works of Nirenberg
[23], Pogorelov [25, 28] and Cheng-Yau [6] played important role in the development of
geometric fully nonlinear PDEs. Though these two problems were solved longtime ago,
there are many important geometric problems of current interest can be traced back
to them. We discuss some recent work which are closely related to these two classical
problems:

a. The intermediate Christoffel-Minkowski problem;
b. Isometric embedding of surfaces to 3-dimensional Riemannian manifolds.

The emphasis here is on issues of regularity and convexity estimates for solutions of non-
linear PDEs.

1. The Minkowski problem

The classical Minkowski problem was considered by Minkowski in [22]. Suppose M
is a closed strongly convex hypersurface in the Euclidean space Rn+1, the Gauss map
ν : M → Sn is a diffeomorphism, where at any point p ∈M , ν(p) is the unit outer normal
at p. Let us denote κ = (κ1, · · · , κn) to be the principal curvatures and K = κ1 · · ·κn the
Gauss curvature of M respectively.

The Minkowski problem: given a positive function ϕ on Sn, find a closed strongly
convex hypersurface whose Gauss curvature is K = 1

ϕ as a function on its outer normals.

By the Divergence Theorem, ϕ has to satisfy equation

(1.1)

∫
Sn
xiϕ =

∫
Sn

xi
K(x)

=

∫
M
ν · ~Ei = 0, i = 1, . . . , n+ 1,

where xi are the coordinate functions and ~Ei is the standard ith coordinate vector of Sn.

The problem has been completely solved by Nirenberg [23] and Pogorelov [25] when
n = 2, and by Cheng-Yau [6] and Pogorelov [28] for general dimensions.
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Theorem 1. Suppose ϕ ∈ C 2(Sn), ϕ(x) > 0, ∀ x ∈ Sn, and satisfies equation (1.1),
then there is a C3,α(∀ 0 < α < 1) strongly convex hypersurface M in Rn+1, such that
K(ν−1

M (x)) = 1
ϕ(x) ∀ x ∈ Sn. M is unique up to translations.

Key to the proof of Theorem 1 is the a priori estimate of solutions to the problem.
The problem can be deduced to a Monge-Ampère equation on Sn.

Let’s start with basic relationship between the convex body in Rn+1 and its support
function. A C2 closed hypersurface M in Rn+1 is called strongly convex if its Gauss
curvature is positive everywhere. The Hadamard Theorem indicates that M is a boundary
of a bounded convex domain. In turn, M can be parametrized by its inverse Gauss map
over Sn with

y(x) = ν−1
M (x).

The support function of M is defined as

u(x) = sup
z∈M

x · z = x · y(x), ∀x ∈ Sn.

Extending u as a homogeneous function of degree one in Rn+1 \ {0}, u is then a convex

function in Rn+1. Since ∂y
∂xj

is tangent to M for all j, and x = νM (y) is normal to M , we

have x · ∂y∂xj = 0 for all j. It follows that

(1.2) ν−1
M (x) = y(x) = ∇Rn+1u(x).

Therefore, M can be recovered completely from u by above equation.
Let en+1 = x be the position vector on Sn, let e1, · · · , en is an orthonormal frame on

Sn so that e1, · · · , en+1 is a positive oriented orthonormal frame in Rn+1. Let ωi and ωij
be the corresponding dual 1-forms and the connection forms respectively. We have

dej = −
n∑
i=1

ωijei, ∀j = 1, 2, · · · , n, and den+1 =
n∑
i=1

ωiei.

If u is a support function of M , by (1.2) the position vector of M as a function on Sn
is

y(x) =
n∑
i=1

uiei + uen+1.

One calculates that

(1.3) dy =
∑
i,j

(uij + uδij)ei ⊗ ωj

The identity (1.3) indicates that the differential dy maps Tx(Sn) to itself and it is
self-adjoint. We have

(1.4) dy = (dνM )−1,

so that the reverse Weingarten map at x coincides with the inverse of the Weingarten
map at y. Since the eigenvaules of the Weingarten map are the principal curvatures
κ = (κ1, · · · , κn) of M at y, the eigenvalues of reverse Weingarten map at x = νM (y) are
exactly the principal radii at y.
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Conversely, if u(x) is a C2 function on Sn with (uij +uδij) > 0, it is a support function
of M defined as

(1.5) M = {∇Rn+1u(x)|x ∈ Rn+1 \ {0}} = {
n∑
i=1

ui(x)ei(x) + u(x)en+1(x)|x ∈ Sn}.

Equation (1.2) implies that u is C2 if M is C2 and its Gauss curvature is positive.
In summary,

Proposition 1. A strongly convex hypersurface M in Rn+1 is C2 if and only if its
support function u is in C2(Sn) with (uij + uδij) > 0. The eigenvalues of (uij + uδij) are
the principal radii of M (parametrized by the inverse Gauss map over Sn).

In particular, the Gauss curvature K of M satisfies equation

(1.6) det(uij + uδij) =
1

K
, on Sn.

Furthermore, any function u ∈ C2(Sn) with (uij + uδij) > 0 is a support function of a C2

strongly convex hypersurface M in Rn+1.

The proof Theorem 1 is method of continuity. Here we illustrate on how to obtain
C2 estimates for the solutions, setting a stage to dealing with the Christoffel-Minkowski
problem in the next section.

For a solution u of equation (1.6), u+
∑n+1

i=1 aixi is also a solution. By proper choice
of {ai}ni=1, we may assume that u satisfies the following orthogonality condition:∫

Sn
xiu dx = 0, ∀i = 1, 2, ..., n+ 1.(1.7)

If u is a support function of a closed hypersurface M which bounds a convex body Ω,
condition (1.7) implies that the Steiner point of Ω coincides with the origin. First is the
upper bound of the extrinsic diameter of M [6].

Lemma 2. Let M ∈ C2, M be a closed convex hypersurface in Rn+1, and let ϕ = 1
K .

If L is the extrinsic diameter of M , then

L ≤ cn

(∫
Sn
ϕ

)n+1
n
(

inf
y∈Sn

∫
Sn

max(0, 〈y, x〉)ϕ(x)

)−1

,

where cn is a positive constant depending only on n. In particular, if u is a support function
of M satisfying (1.6) and (1.7), then

0 ≤ minu ≤ maxu ≤ cn,k
(∫

Sn
ϕ

)n+1
n
(

inf
y∈Sn

∫
Sn

max(0, 〈y, x〉)ϕ(x)

)−1

.

Proof. Let p, q ∈ M such that the line segment joining p and q has length L. We
may assume 0 is in the middle of the line segment. Let ~y be a unit vector in the direction
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of this line. Let v be the support function and W = {vij + vδij}. We have σn(W ) = ϕ.
Now, for x ∈ Sn, we get

u(x) = sup
Z∈M
〈Z, x〉 ≥ 1

2
Lmax(0, 〈y, x〉).

If we multiply by ϕ and integrate over Sn, we get

L ≤ 2

(∫
Sn
uϕ

)(∫
Sn

max(0, 〈y, x〉)ϕ
)−1

.

As
∫
Sn uσn(W ) = V ol(Ω) and

∫
Sn σn(W ) is the surface area of M = ∂Ω, by the isoperi-

metric inequality,

(

∫
Sn
uσn(W ))

1
n+1 ≤ Cn(

∫
Sn
σn(W ))

1
n .

In turn, we get

L ≤ cn
(∫

Sn
ϕ

)n+1
n
(

inf
y∈Sn

∫
Sn

max(0, (y, x))ϕ

)−1

.

If u satisfies (1.7), the Steiner point of M is the origin. The last inequality is a
consequence of the above inequality. �

We precede to obtain C2 estimate, using the fact that det
1
n (W ) is concave.

Proposition 2. There is a constant C > 0 depending only on n, ‖K‖C2(Sn) and
minSn K, such that if u satisfies (1.7) and u is a solution of (1.6), then ‖u‖C2(Sn) ≤ C.
There is an explicit bound for the function H := trace(uij + δiju) = 4u+ nu,

min
x∈Sn

(nϕ̃(x)) ≤ max
x∈Sn

H(x) ≤ max
x∈Sn

(nϕ̃(x)−4ϕ̃(x)),(1.8)

where ϕ̃ := ϕ
1
n .

Proof. Since (uij+δiju) is positive definite, it is controlled by its trace by H. The first
inequality follows from the Newton-MacLaurin inequality. Assume the maximum value of
H is attained at a point x0 ∈ Sn. We choose an orthonormal local frame e1, e2, ..., en near

x0 such that uij(x0) is diagonal. If W = (uij + δiju), we define G(W ) := σ
1
n
n (W ). Then

equation (1.6) becomes

G(W ) = ϕ̃.(1.9)

By the commutator identity Hii = 4Wii− nWii +H and the assumption that the matrix
W > 0, so (Gij) = ( ∂σn

∂Wij
) is positive definite. Since (Hij) ≤ 0, and (Gij) is diagonal, by

the above commutator identity, it follows that at x0,

0 ≥ GijHij = Gii(4Wii)− nGiiWii +H

n∑
i

Gii.(1.10)

As G is homogeneous of degree one, we have

GiiWii = ϕ̃.(1.11)
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Next we apply the Laplace operator to equation (2.4) to obtain

GijWijk = ∇kϕ̃, Gij,rsWijkWrsk +Gij4Wij = 4ϕ̃.
By fact that G is concave, at xo

Gii4(Wii) ≥ 4ϕ̃.(1.12)

Combining (1.11), (1.12) and (1.10),

(1.13) 0 ≥ 4ϕ̃− nϕ̃+H
n∑
i=1

Gii.

As W is diagonal at the point, we may write W = (W11, ...,Wnn) as a vector in Rn. A
simple calculation yields

n∑
i=1

Gii =
σn−1(W )

nσ
1− 1

n
n (W )

≥ 1,

the last inequality follows from the Newton-MacLaurin inequality.
By (1.13), we have H ≤ nϕ̃−4ϕ̃. �

This ends the a priori estimates for solutions of the Minkowski problem. It will serve
as an introduction to the intermediate Christoffel-Minkowski problem in the next section.

2. The Christofell-Minkowski problem, regularity and convexity

The Minkowski problem was originated by Minkowski [22] related to the notions of
area measures and curvature measures in convex geometry. The problem of prescribing
area measures is called the Christoffel-Minkowski problem [29], we refer [9] (see also [8])
for the treatment of the problem of prescribing curvature measures.

For a convex body Ω ⊂ Rn+1 with smooth boundary, the n-th area measure of the
convex body is 1

K dVSn where K is the Gauss curvature of ∂Ω. For each 1 ≤ k ≤ n, the
k-th area measure of the body is σk(W )dVSn (e.g., [29]), where σk the k-th elementary
symmetric function. The problem of prescribing k-th area measure can be deduced to
solve the following Hessian type equation

σk(uij(x) + uδij(x)) = ϕ(x), ∀x ∈ Sn,(2.1)

and

(2.2) W (x) = (uij(x) + δiju(x)) > 0, ∀x ∈ Sn.

We recall definition of admissible solutions [5].

Definition 3. For 1 ≤ k ≤ n, let Γk is a convex cone in Rn determined by

Γk = {λ ∈ Rn : σ1(λ) > 0, ..., σk(λ) > 0}.
u ∈ C2(Sn) is called k-convex, if W (x) = {uij(x) + u(x)δij} ∈ Γk for each x ∈ Sn. u is
convex on Sn if W is n-convex. Furthermore, u is called an admissible solution of (2.1),
if u is k-convex and satisfies (2.1).
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The first step is to obtain regularity estimates for admissible solutions of equation
(2.1).

2.1. A priori estimates. In the case of k = 1, equation (2.1) is a linear elliptic
equation on the sphere. That C2 a priori estimates hold for a solution u satisfying (1.7) in
this case follows from standard linear elliptic theory. Therefore, we will restrict ourselves
to the case k ≥ 2. The proof of Proposition 2 can be adapted to get similar C2 estimate
as in (1.8) for solutions of equation (2.1). This type of estimate can be used to obtain C0

estimate too, by a compactness argument.

Note that if W ∈ Γk, the ( ∂σk
∂Wij

) is positive definite and σ
1
k
k (W ) is concave.

Proposition 3. There is a constant C > 0 depending only on n, k, ‖ϕ‖C2(Sn) and

‖ 1
ϕ‖C0(Sn), such that if u satisfies (1.7) and u is an admissible solution of (2.1), then

‖u‖C2(Sn) ≤ C. There is an explicit bound for the function H := trace(uij + δiju) =
4u+ nu,

min
x∈Sn

(nϕ̃(x)) ≤ max
x∈Sn

H(x) ≤ max
x∈Sn

(nϕ̃(x)−4ϕ̃(x)),(2.3)

where ϕ̃ := ( ϕ
Ckn

)
1
k , Ckn = n!

k!(n−k)! .

Proof. Since the entries |uij+δiju| are controlled by eigenvalues {λi}ni=1 of (uij+δiju).
The eigenvalues are controlled by H since (uij + δiju) ∈ Γk, k ≥ 2. Indeed,

n∑
i=1

λ2
i = H2 − 2σ2(uij + δiju)) ≤ H2,

as σ2(uij + δiju)) > 0 when (uij + δiju) ∈ Γk, k ≥ 2.
The first inequality in (2.3) follows from the Newton-MacLaurin inequality. Assume

the maximum value of H is attained at a point x0 ∈ Sn. We choose an orthonormal local
frame e1, e2, ..., en near x0 such that uij(x0) is diagonal. If W = (uij + δiju), we define

G(W ) := ( σk
Ckn

)
1
k (W ). Then equation (2.1) becomes

G(W ) = ϕ̃.(2.4)

For the standard metric on Sn, one may easily check the commutator identity Hii =
4Wii − nWii + H. By the assumption that the matrix W ∈ Γk, so (Gij) is positive
definite. Since (Hij) ≤ 0, and (Gij) is diagonal, it follows that at x0,

0 ≥ GijHij = Gii(4Wii)− nGiiWii +H

n∑
i

Gii.(2.5)

Next we apply the Laplace operator to equation (2.4) to obtain

GijWijk = ∇kϕ̃, Gij,rsWijkWrsk +Gij4Wij = 4ϕ̃.

By the concavity of G, at xo we have

Gii4(Wii) ≥ 4ϕ̃.(2.6)
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As GiiWii = ϕ̃, by (2.6) and (2.5),

(2.7) 0 ≥ 4ϕ̃− nϕ̃+H
n∑
i=1

Gii.

As W is diagonal at the point, we may write W = (W11, ...,Wnn) as a vector in Rn. A
simple calculation yields

Gii =
σk(W )

1
k
−1

(Ckn)
1
k

∂σk(W )

∂Wii
=
σk(W )

1
k
−1

(Ckn)
1
k

σk−1(W |i),

where (W |i) is the vector given by W with Wii deleted. It follows from the Newton-
MacLaurin inequality that

n∑
i=1

Gii = (n− k + 1)
σk(W )

1
k
−1

(Ckn)
1
k

σk−1(W ) ≥ 1.

By (2.7), we have H ≤ nϕ̃−4ϕ̃.
Finally, we claim u is bounded if it satisfying condition (1.7). Suppose this is not true,

there is a sequence ul satisfying the equation with ‖ul‖L∞ → ∞. We rescale, consider
ũl = ul

‖ul‖L∞ , it satisfies (1.7) and (2.3) with ‖ϕ̃l‖C2 → 0. By compactness, there is a

subsequence convergent to ũ in C1,α satisfying (1.7) and ∆ũ + nũ = 0, with ‖ũ‖L∞ = 1.
Contradiction. �

Once C2 estimate is in hand, higher regularity estimates for admissible solutions of
equation (2.1) by the Evens-Krylov Theorem. The existence of admissible solutions to
equation (2.1) provided that ϕ satisfies (1.1) can be established [14].

The main question is when a solution of (2.1) is geometric. That is, when an admissible
solution u satisfies the convexity condition (2.2). When k < n, an admissible solution
of (2.1) may not satisfy (2.2) in general. The following example is essentially due to
Alexandrov. Let

(2.8) u(x) = 1−
x2
n+1

2
,

where xn+1 is the (n+ 1)-th coordinate function. It is straightforward to check that this
function satisfies

W (x) = (uij(x) + δiju(x)) ≥ 0, ∀x ∈ Sn,

The spherical Hessian W is positive everywhere except on the great circle xn+1 = 0, the
rank is n− 1 there. For 1 ≤ k < n, there is δk > 0, such that uδ = u− δk is an admissible
solution to equation (2.1) for some positive analytic function ϕ, but one of eigenvalues of
W is negative on the great circle.

2.2. Convexity. The following theorem in [13] provides a sufficient condition for
convexity of solutions.
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Theorem 4. Suppose u ∈ C4(Sn) is a solution equation (2.1) with Wu ≥ 0. Suppose
ϕ satisfies

(2.9) (ϕ−
1
k )ij(x) + δijϕ

− 1
k ≥ 0,∀x ∈ Sn,

then Wu > 0.

Set

(2.10) σαβm =
∂σk(W )

∂Wαβ
, σij,rsm =

∂σk(W )

∂Wij∂Wrs
, ∀m = 1, · · · , n.

Theorem 4 can be deduced from the Minkowski identity and the following proposition
[13]. It is call the constant rank theorem, going back to the early works of Caffarelli-
Friedman [3] and Yau [30], see also [13, 4, 1].

Proposition 5. Suppose u ∈ C4(Sn) is a solution of (2.1) and W (x) ≥ 0, ∀x ∈ Sn. Let
l be the minimal rank of W (x) on Sn which is attained at x0 and set φ(x) = σl+1(W (x)).
If ϕ satisfies condition (2.9), then there is a neighborhood O of x0 and there are constants
C1, C2 depending only on ||u||C3, ||ϕ||C1,1, n, k and σl(W (x0)), such that differential
inequality holds

n∑
α,β

σαβk (x)φαβ(x) ≤ C1|∇φ(x)|+ C2φ(x),∀x ∈ O.(2.11)

Recall that ϕ(x) = σk(W (x)), and φ(x) = σl+1(W (x)). Since W is positive semi-

definite and u is k-convex, (σαβk ) is positive definite and (σijl+1) is positive semi-definite.
One first observes that there are at least l positive eigenvalues of W with a controlled lower
bound in a neighborhood O of x0, and other (n− l) eigenvalues are sufficient small. Let B
be that part of the index set so arranged such that the Wii might be small (controlled by φ)
for i ∈ B (see the proof below for the precise definition). In view of this observation, Wii is
negligible for each i ∈ B. The basic idea in the proof of Proposition 5 is to to explore the

relationship between
∑n

α,β σ
αβ
k φαβ and ϕ

k+1
k σl(W )

∑
i{(ϕ

− 1
k )ii + δiiϕ

− 1
k }. One of the key

terms to be handled will be
∑

i,α σ
ii
l+1σ

αα
k Wiiαα. With the help of some basic properties of

elementary symmetric functions, it turns out that some algebraic cancellations will occur
after commuting covariant derivatives and re-arranging the terms to fit the right algebraic
formats! Almost all of the computations in the proof are algebraic and the inequality in
Lemma 9 in Appendix will be used in a crucial way in the last step of the proof.

Proof the Proposition. For two functions defined in an open set O ⊂ Sn, y ∈ O,
we say that h(y) . k(y) provided there exist positive constants c1 and c2 such that

(h− k)(y) ≤ (c1|∇φ|+ c2φ)(y).(2.12)

We also write h(y) ∼ k(y) if h(y) . k(y) and k(y) . h(y). Next, we write h . k if
the above inequality holds in O, with the constants c1, and c2 depending only on ||u||C3 ,
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||ϕ||C2 , n and C0 (independent of y and O). Finally, h ∼ k if h . k and k . h. We shall
show that

n∑
α,β=1

σαβk φαβ . 0.(2.13)

For any z ∈ O, let λ1 ≥ λ2... ≥ λn be the eigenvalues of W at z. Since σl(W ) ≥ C0 > 0
and u ∈ C3, for any z ∈ Sn, there is a positive constant C > 0 depending only on ||u||C3 ,
||ϕ||C2 , n and C0, such that λ1 ≥ λ2... ≥ λl ≥ C. Let G = {1, 2, ..., l} and B = {l+1, ..., n}
be the “good” and “bad” sets of indices respectively, and define σk(W |i) = σk((W |i))
where (W |i) means that the matrix W excluding the i-column and i-row, and (W |ij)
means that the matrix W excluding the i, j columns and i, j rows. Let ΛG = (λ1, ..., λl)
be the ”good” eigenvalues of W at z; for convenience in notation, we also write G = ΛG if
there is no confusion. In the following, all calculations are at the point z using the relation
”.”, with the understanding that the constants in (2.12) are under control.

For each fixed z ∈ O fixed, we choose a local orthonormal frame e1, ..., en so that W
is diagonal at z, and Wii = λi,∀i = 1, ..., n. Now we compute φ and its first and second
derivatives in the direction eα.

We note that σijl+1 is diagonal at the point since W is diagonal. As φ = σl+1(W ) and

φα =
∑

i,j σ
ij
l+1Wijα, we find that (as W is diagonal at z),

0 ∼ φ(z) ∼ (
∑
i∈B

Wii)σl(G) ∼
∑
i∈B

Wii, (so Wii ∼ 0, i ∈ B),(2.14)

This relation yields that, for 1 ≤ m ≤ l,

σm(W ) ∼ σm(G), σm(W |j) ∼

{
σm(G|j), if j ∈ G;

σm(G), if j ∈ B.
(2.15)

σm(W |ij) ∼


σm(G|ij), if i, j ∈ G;

σm(G|j), if i ∈ B, j ∈ G;

σm(G), if i, j ∈ B, i 6= j.

Also,

0 ∼ φα ∼ σl(G)
∑
i∈B

Wiiα ∼
∑
i∈B

Wiiα(2.16)

and

σijl+1 ∼

{
σl(G), if i = j ∈ B,

0, otherwise.
(2.17)

σij,rsl+1 =


σl−1(W |ir), if i = j, r = s, i 6= r;

−σl−1(W |ij), if i 6= j, r = j, s = i;

0, otherwise.

(2.18)
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Since φαα =
∑

i,j(σ
ij,rs
l+1 WrsαWijα + σijl+1Wijαα), it follows from (2.18) that for any

α ∈ {1, 2, ..., n}

φαα =
∑
i 6=j

σl−1(W |ij)WiiαWjjα −
∑
i 6=j

σl−1(W |ij)W 2
ijα +

∑
i

σiil+1Wiiαα

= (
∑
i∈G
j∈B

+
∑
i∈B
j∈G

+
∑
i,j∈B
i 6=j

+
∑
i,j∈G
i 6=j

)σl−1(W |ij)WiiαWjjα

− (
∑
i∈G
j∈B

+
∑
i∈B
j∈G

+
∑
i,j∈B
i 6=j

+
∑
i,j∈G
i 6=j

)σl−1(W |ij)W 2
ijα +

∑
i

σiil+1Wiiαα.(2.19)

From (2.16) and (2.15),∑
i∈B
j∈G

σl−1(W |ij)WiiαWjjα ∼ (
∑
j∈G

σl−1(G|j)Wjjα)
∑
i∈B

Wiiα ∼ 0.(2.20)

Since 0 ≤Wmm ∈ C2 for any unit vector field, by Lemma 12,

|∇Wmm(x)| ≤ C
√
Wmm(x).

This implies that

|∇Wij(x)| ≤ C(
√
Wii(x) +

√
Wjj(x)).

By (2.16), ∀i ∈ B fixed and ∀α, therefore,∑
i,j∈B

σl−1(W |ij)WiiαWjjα ∼ 0.(2.21)

and ∑
j∈G,i∈B

σl−1(W |ij)W 2
ijα ∼

∑
i∈B,j∈G

σl−1(G|j)W 2
ijα.(2.22)

Inserting (2.20)-(2.22) into (2.19), by (2.15) we obtain

φαα ∼
∑
i

σiil+1Wiiαα − 2
∑
i∈B
j∈G

σl−1(G|j)W 2
ijα.(2.23)

Thus, ∑
α,β

σαβk φαβ =

n∑
α=1

σααk φαα ∼
n∑

α=1

∑
i

σiil+1σ
αα
k Wiiαα

−2

n∑
α∈G

∑
i∈B
j∈G

σl−1(G|j)σααk W 2
ijα.(2.24)
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By (2.14), (2.17) and homogeneity of σk and σl+1 (since |B| = n− l)
n∑

α=1

n∑
i=1

σiil+1σ
αα
k (Wii −Wαα) = (l + 1)φ

n∑
α=1

σααk − kϕ
n∑
i=1

σiil+1

∼ −kϕ
∑
i∈B

σiil+1 ∼ −(n− l)kϕσl(G).

Commuting the covariant derivatives, it follows that

n∑
α=1

n∑
i=1

σiil+1σ
αα
k Wiiαα =

n∑
α=1

n∑
i=1

σiil+1σ
αα
k (Wααii +Wii −Wαα)

∼
n∑

α=1

n∑
i=1

σiil+1σ
αα
k Wααii − (n− l)kϕσl(G).(2.25)

Differentiating equation (2.1), we get

ϕii =
∑
α,β,r,s

σαβ,rsk WαβiWrsi +
∑
α,β

σαβk Wαβii.

(2.15) and (2.17) yield,∑
α

∑
i

σiil+1σ
αα
k Wααii =

∑
i

σiil+1{ϕii −
∑
α,β,r,s

σαβ,rsk WαβiWrsi}

∼
∑
i∈B
{−(

∑
α∈G
β∈B

+
∑
α∈B
β∈G

+
∑
α,β∈B
α 6=β

+
∑
α,β∈G
α 6=β

)σk−2(W |αβ)WααiWββi

+ϕii +

n∑
α,β=1
α 6=β

σk−2(W |αβ)W 2
αβi}σl(G).(2.26)

It follows from (2.15) and (2.16) that for 1 ≤ m ≤ n,∑
α∈B
β∈G

σm(W |αβ)WααiWββi ∼ [
∑
β∈G

σm(G|β)Wββi]
∑
α∈B

Wααi ∼ 0.(2.27)

In turn,

n∑
α=1

n∑
i=1

σiil+1σ
αα
k Wααii ∼ σl(G)

∑
i∈B
{ϕii −

∑
α,β∈G
α 6=β

σk−2(G|αβ)WββiWααi

+

n∑
α,β=1
α 6=β

σk−2(W |αβ)W 2
αβi}.(2.28)
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We note that |B| = n − l, so
∑

i∈B kϕ = (n − l)kϕ. Now inserting (2.28) and (2.25) to
(2.24), by (2.15) and (2.15) we have∑

α,β

σαβk φαβ ∼ σl(G)
∑
i∈B

(ϕii − kϕ)− σl(G)
∑
i∈B

∑
α,β∈G
α 6=β

σk−2(G|αβ)WααiWββi

+σl(G)
∑
i∈B

∑
α 6=β

σk−2(W |αβ)W 2
αβi − 2

n∑
α=1

∑
i∈B,β∈G

σl−1(G|β)σk−1(W |α)W 2
iβα.(2.29)

When α, β ∈ G,α 6= β, as W is diagonal,

σl−1(G|β)σk−1(G|α) = σl−1(G|β)[σk−1(G|αβ) +Wββσk−2(G|αβ)]

≥ σl−1(G|β)Wββσk−2(G|αβ) = σl(G)σk−2(G|αβ).(2.30)

From (2.30), we get∑
i∈B

∑
α,β∈G
α 6=β

σl(G)σk−2(W |αβ)W 2
αβi − 2

∑
i∈B

∑
α,β∈G
α 6=β

σl−1(G|β)σk−1(G|α)W 2
αβi

. −
∑
i∈B

∑
α,β∈G
α 6=β

σl−1(G|β)σk−1(G|α)W 2
αβi ≤ 0.(2.31)

As Wiβα = Wαβi on the standard Sn (recall that Wαβ = uαβ + δαβu). We have

σl(G)
∑
i∈B

∑
α 6=β

σk−2(W |αβ)W 2
αβi − 2

n∑
α=1

∑
i∈B,β∈G

σl−1(G|β)σk−1(W |α)W 2
iβα

. −2
∑
i∈B

∑
α∈G

σl−1(G|α)σk−1(G|α)W 2
ααi.

We note that σm(W |αβ) ∼ σm(G), ∀α, β ∈ B, putting the previous inequality into (2.29),

n∑
α,β

σαβk φαβ . σl(G)[
∑
i∈B

(ϕii − kϕ)−
∑
i∈B

∑
α,β∈G
α 6=β

σk−2(G|αβ)WααiWββi]

−2
∑
i∈B

∑
α∈G

σl−1(G|α)σk−1(G|α)W 2
ααi

= σl(G)
∑
i∈B

[ϕii −
k + 1

k

ϕ2
i

ϕ
− kϕ] + I1 + I2,(2.32)

where

I1 =
∑
i∈B

(
σl(G)ϕ2

i

kϕ
−
∑
α∈G

σl−1(G|α)σk−1(G|α)W 2
ααi),
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and

I2 =
∑
i∈B
{σl(G)[

ϕ2
i

ϕ
−
∑
α,β∈G
α 6=β

σk−2(G|αβ)WααiWββi]

−
∑
α∈G

σl−1(G|α)σk−1(G|α)W 2
ααi}.

For i ∈ B,

ϕi = (
∑
α∈B

+
∑
α∈G

)σk−1(W |α)Wααi ∼
∑
α∈G

σk−1(G|α)Wααi.(2.33)

It follows that for any i ∈ B,

ϕi
2 ∼

∑
α∈G

σ2
k−1(G|α)W 2

ααi +
∑
α,β∈G
α 6=β

σk−1(G|α)σk−1(G|β)WααiWββi.

By Corollary 10, I2 . 0
By homogeneity of σk(W ) and (2.33),

I1 ∼
1

kϕ
(
∑
α∈G

σ
1
2
l (G)σk−1(G|α)Wααi)

2 −
∑
α∈G

σl−1(G|α)σk−1(G|α)W 2
ααi

=
1

kϕ
[
∑
α∈G

σ
1
2
l−1(G|α)W

1
2
αασk−1(G|α)Wααi]

2 −
∑
α∈G

σl−1(G|α)σk−1(G|α)W 2
ααi

≤ 1

kϕ

∑
α,β∈G

σl−1(G|α)σk−1(G|α)W 2
ααiWββσk−1(G|β)

−
∑
α∈G

σl−1(G|α)σk−1(G|α)W 2
ααi

∼
∑
α∈G

σl−1(G|α)σk−1(G|α)W 2
ααi −

∑
α∈G

σl−1(G|α)σk−1(G|α)W 2
ααi

= 0.

The proof of the Proposition is complete. �

By Proposition 3 and Proposition 5, and compactness argument, we have

Proposition 4. Suppose u ∈ C4(Sn) is a solution equation (2.1) with Wu ≥ 0. Sup-
pose ϕ satisfies condition (2.9), then there is C > 0 depending only on n, ‖ϕ‖C2, infSn ϕ
such that

Wu(x) ≥ CI, ∀x ∈ Sn.

3. The Weyl problem, curvature estimates for immersed hypersurfaces

The Weyl problem [34] concerns the isometric embedding of positive curved surface
(S2, g) to R3. The problem was solved by Nirenberg in his landmark paper [23]. Prior
to Nirenberg’s work, Lewy [16] solved the problem when the metric g is analytic. The



14 PENGFEI GUAN

Weyl isometric embedding problem in hyperbolic space was considered by Pogorelov [26],
he also considered isometric embeddings of (S2, g) to general 3-dimensional Riemannian
manifolds [27]. Aside from geometric interest, such type of isometric embedding to general
Riemannian manifolds has connections with quasi local mass in general relativity [2, 31,
19, 20, 32, 33].

As usual, one employs the method of continuity to obtain the isometric embedding.
The openness is related to the infinitesimal rigidity, which is established by Li-Wang [17]
for general ambient space. Here we only concentrate curvature estimates obtained in [10]
for immersed hypersurfaces in warped product ambient space. This type estimate is valid
for general dimensions and in degenerate case. For n = 2, there is also a work by Lu [21]
where some refined estimates are proved for embedded surface (M2, g) in (N̄3, ḡ) using
Heinz system when the extrinsic scalar curvature is strictly positive.

A warped product space is a manifold (Nn+1, ḡ) for n ≥ 2 equipped with warped
product structure, where metric is of form

(3.1) ḡ = dr2 + φ2(r)dσ2
Sn ,

where φ(r) is defined for r ≥ r0 ≥ 0 and dσ2
Sn is the standard metric on Sn. φ(r) = r, φ(r) =

sinh r and φ(r) = sin r correspond to space form Rn+1,Hn+1 and Sn+1 respectively.
Let (Mn, g) be an isometrically immersed hypersurface in an ambient space (Nn+1, ḡ)

for n ≥ 2. Denote Ric and R̄ic the Ricci curvature tensors of (M, g) and (N, ḡ) respectively,
and denote R and R̄ to be the scalar curvatures of M and N respectively. Fix a unit normal
ν locally, let κi, i = 1, · · · , n be the principal curvatures of M with respect to ν. We call
σ2(κ1, · · · , κn) the extrinsic scalar curvature of the immersed hypersurface. It is clear
that it is independent the choice of unit normal ν as σ2 is an even function. The Gauss
equation yields,

(3.2) σ2(κ1, · · · , κn) =
1

2
(R− R̄) + R̄ic(ν, ν).

From the isometric immersing, one has C1 estimate directly. We prove C2 estimate
by establishing the following curvature estimate of immersed hypersurafces in (Nn+1, ḡ).

Theorem 6. Let (N, ḡ) be a warped product space where ḡ defined as in (3.1). Denote

φ
′
(ρ) = dφ

dρ and Φ(ρ) =
∫ ρ

0 φ(r)dr. Suppose X : (Mn, g) → (N, ḡ) is a C4 immersed

compact hypersurface with nonnegative extrinsic scalar curvature and φ
′
> 0 in M , then

there exists constant C depending only on n, ‖g‖C4(M), ‖ḡ‖C4(M̃) (where M̃ is any open

set in N containing X(M)), supx∈M Φ(X(x)) and infx∈M φ
′
(X(x)) such that

(3.3) max
x∈M,i=1,...,n

|κi(X(x))| ≤ C.

When (Nn+1, ḡ) is the standard Euclidean space Rn+1, estimate (3.3) was proved in
[10] for n = 2 and in [18] for general n with an explicit constant for embedded hypersur-
faces with nonnegative sectional curvature. Estimate (3.3) does not depend on the lower
bound of σ2(κ). We treat equation (3.2) as a degenerate fully nonlinear equation.

Let’s denote Rijkl and R̄abcd to be the Riemannian curvatures of M and N respectively.
For a fixed local frame (e1, · · · , en) on M , let ν be a normal vector field of M , and let
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h = (hij) be the second fundamental form of M with respect to ν. We have the Gauss
equation and Codazzi equation,

Rijkl = R̄ijkl + hikhjl − hilhjk, (Gauss)(3.4)

∇khij = ∇jhik + R̄νijk. (Codazzi)(3.5)

The convention that Rijij denotes the sectional curvature is used here.
Take trace of the Gauss equation,

Ric(i, i) = R̄ic(i, i)− R̄iνiν +
∑
j

(
hiihjj − h2

ij

)
,

and the scalar curvature of M is,

R = R̄− 2R̄ic(ν, ν) + 2σ2(h).

Set

f(x, ν(x)) =
R(x)− R̄(X(x))

2
+ R̄icX(x)(ν(x), ν(x)),(3.6)

we can write

(3.7) σ2(h(x)) = f(x, ν(x)), ∀x ∈M.

Lemma 7. Let H = Trh, then

|∆gf(x)| ≤ C(
∑
i,j

|hij(x)|2 + |∇H|+ 1),(3.8)

for any x ∈M , where C depends on ‖g‖C4 and ‖ḡ‖C4.

Proof. ∀x0 ∈ M ⊂ N , fix a local orthonormal coordinates (x1, · · · , xn) at x0 ∈ M ,
a local orthonormal coordinates (X1, · · · , Xn+1) of x0 ∈ N . We may view R̄ic locally as
a function in C2(N × Rn+1 × Rn+1). For each X fixed, R̄ic(ξ, η) is a bilinear function of
ξ, η ∈ Rn+1.

Denote Xα
i = ∂Xα

∂xi
, Xα

ii = ∂2Xα

∂x2i
, and denote R̄icα = ∂R̄ic

∂Xα
. Direct computation yileds

fii =
Rii − R̄αβXα

i X
β
i − R̄αXα

ii

2
+ 2R̄ic

(
∂2ν

∂x2
i

, ν

)
+ 2R̄ic

(
∂ν

∂xi
,
∂ν

∂xi

)
+R̄icα(ν, ν)Xα

ii + 4R̄icα

(
∂ν

∂xi
, ν

)
Xα
i + R̄icαβ(ν, ν)Xα

i X
β
i .

Since

∂ν

∂xi
= hijej ,

∂2ν

∂x2
i

= hijiej − h2
ijν,

and

|∂X
α

∂xi
| ≤ C, |∂

2Xα

∂x2
i

| ≤ C(
∑
j

|hij |+ 1).
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Thus, by Codazzi equation

fii = 2
∑
jk

hijhikR̄ic(j, k)− 2
∑
j

h2
ijR̄ic(ν, ν) + 2

∑
j

hiijR̄ic(j, ν)

−O(
∑
j

|hij |+ 1).(3.9)

Sum over i, (3.8) follows directly. �

We need one more lemma.

Lemma 8. Suppose the second fundamental form (hij) is diagonalized at x0, assume

h11 ≥ h22 · · · ≥ hnn and σ1 ≥ 0, then either H ≤ 1 or |hii| ≤ C
h11

for i 6= 1, where C is a

constant depending only on ‖g‖C2 , ‖ḡ‖C2.

Proof. Suppose that H > 1, then h11 ≥ H
n ≥

1
n . By Gauss equation (3.4), |h11hii| =

|R1i1i − R̄1i1i| ≤ C, we deduce that |hii| ≤ C
h11

. �

3.1. Proof of Theorem 6. Suppose (N, ḡ) is a warped product space with an am-
bient metric ḡ as

(3.10) ḡ = dρ2 + φ2(ρ)ds2
Sn

where ds2
Sn is the standard induced metric in Sn, ρ represents the distance from the origin.

The vector field V = φ(ρ) ∂∂ρ is a conformal Killing field in N . Denote Φ(ρ) =
∫ ρ

0 φ(r)dr.

Proof. Denote by κ(x) = (κ1(x), · · · , κn(x)) the principal curvatures of x ∈M . Set,

ϕ = log|H|+ α
Φ

m
,

where H = σ1(h) is the mean curvature, m = infx∈M φ′(X(x)) and α is a positive constant
to be determined later. Suppose ϕ attains maximum at x0. Without loss of generality,
we may assume |H|(x0) ≥ 1, otherwise there’s nothing to prove. With a suitable choice
of local orthonormal frame (e1, · · · , en), we may also assume H(x0) ≥ 1 and hij(x0) is
diagonal so that κi = hii.

At x0.

(3.11) ϕi =

∑
l hlli
H

+ α
Φi

m
= 0,

ϕii =

∑
l hllii
H

−
(
∑

l hlli)
2

H2
+ α

Φii

m
.(3.12)

Commuting the derivatives,

(3.13) hllii = hiill − h2
iihll + h2

llhii + hllR̄ilil + hiiR̄illi +∇lR̄iilν +∇iR̄illν .
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Put (3.13) into (3.12), at x0,

σii2 ϕii =
∑
l

σii2
(
hiill − h2

iihll + hllR̄ilil + hiiR̄illi +∇lR̄iilν +∇iR̄illν
)

H

+
2fh2

ll

H
−
σii2 (
∑

l hlli)
2

H2
+ α

σii2 Φii

m
.(3.14)

It follows from equation (3.7),

σii2 hiik = fk, σii2 hiikk + σpq,rs2 hpqkhrsk = fkk.

Identity (3.14) becomes,

σii2 ϕii =
∑
l

σii2
(
hllR̄ilil + hiiR̄illi +∇lR̄iilν +∇iR̄illν

)
− σpq,rs2 hpqlhrsl

H

−σii2 h2
ii −

σii2 (
∑

l hlli)
2

H2
+ α

σii2 Φii

m
+

2fh2
ll

H
+
fll
H
.

As |∇lR̄ijkν |, ∀i, j, k ≤ n are controlled by H, and 0 ≤ σii2 ≤ CH, at x0,

0 ≥
∑

l (fll − σ
pq,rs
2 hpqlhrsl)

H
− σii2 h2

ii −
σii2 (
∑

l hlli)
2

H2
+ α

σii2 Φii

m
− CH,(3.15)

where C is a constant depending on n, ‖g‖C4 , ‖ḡ‖C4 . In the rest of the proof, we denote
C as a constant under contorl, which might change from line to line.

Replace Φii by φ′(ρ)− hiiu in (3.15),

0 ≥ 1

H

(∑
l

(fll − σpq,rs2 hpqlhrsl)

)
− σii2 h2

ii −
σii2 (
∑

l hlli)
2

H2

+(α− C)H − Cαφ
m
.(3.16)

By Lemma 7 and (3.11) and the assumption H ≥ 1,

0 ≥ (α− C)H −
∑

l σ
pq,rs
2 hpqlhrsl
H

− σii2 h2
ii −

σii2 (
∑

l hlli)
2

H2
− Cαφ

m
.(3.17)

Note that

−σpq,rs2 hpqlhrsl = −
∑
p6=q

(hpplhqql − h2
pql),(3.18)

It follows from Lemma 11 that,

−
∑
p 6=q

hpplhqql ≥ min{−2
(σ2)l(σ1)l

σ1
, 0}

Together with critical condition (3.11) and the definition of σ2,

−
∑
p 6=q

hpplhqql ≥ −C
αφ

m
H(3.19)
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Combine (3.18), (3.19) and (3.17)

0 ≥
∑

p 6=q h
2
pql

H
− σii2 h2

ii −
σii2 (
∑

l hlli)
2

H2
+ (α− C)H − Cαφ

m
.

As
∑

j 6=i hjjhii is bounded by Gauss equation (3.4). Thus,

σii2 h
2
ii =

n∑
i=1

hii(
∑
j 6=i

hjjhii) ≤ C
n∑
i=1

|hii| ≤ CnH.

Therefore,

0 ≥ 1

H

∑
p 6=q

h2
pql −

σii2 (
∑

l hlli)
2

H2
+ (α− C)H − Cαφ

m
.(3.20)

By lemma 8, σ11
2 ≤ C

H . Critical equation (3.11) yields

ϕi =
Hi

H
+ α

Φi

m
= 0.

We have

σ11
2

(
H1

H

)2

≤ C α
2φ2

Hm2
.

By Codazzi equation (3.5),

0 ≥
∑

p 6=q h
2
pql

H
−
∑
i 6=1

σii2 (
∑

l hlli)
2

H2

+(α− C)H − Cαφ
m
− C α

2φ2

Hm2
(3.21)

≥
∑

l 6=i 2h2
lli

H
−
∑
i 6=1

σii2

(∑
l h

2
lli +

∑
p 6=q hppihqqi

)
H2

+(α− C)H − Cαφ
m
− C α

2φ2

Hm2
.

It follows from (3.19) that,

−
∑
i 6=1

σii2

(∑
p 6=q hppihqqi

)
H2

≥ −C
∑
i 6=1

σii2
αφ

mH
≥ −Cαφ

m
.(3.22)

Insert (3.22) into (3.21),

0 ≥ 1

H

∑
l 6=i

2h2
lli −

∑
i 6=1

σii2 h
2
lli

H2
+ (α− C)H − Cαφ

m
− C α

2φ2

Hm2
.



THE WEYL AND MINKOWSKI PROBLEMS, REVISITED 19

By Lemma 8, σii2 ≤ H + C
H for i 6= 1, we have

0 ≥ 1

H

∑
l 6=i

(1− C

H2
)h2
lli −

∑
i 6=1

(1 + C
H2 )h2

iii

H

+(α− C)H − Cαφ
m
− C α

2φ2

Hm2
.

We deal with
h2iii
H . Again by Gauss equation (3.4),

h11ihii + h11hiii = R1i1i,i − R̄1i1i,i

Thus ∀i 6= 1,

(3.23)
h2
iii

H
≤ 2h2

iih
2
11i + C

Hh2
11

≤ Ch
2
11i

H5
+

C

H3

In turn,

(3.24) 0 ≥ 1

H

∑
l 6=i

(1− C

H2
)h2
lli + (α− C)H − Cαφ

m
− C α

2φ2

Hm2
.

Choose α big enough, we have H ≤ Cφ
m at the maximum point of ϕ. Since Φ(x0) −

min Φ ≥ Cφ(ρ̃), we have H ≤ Ce
C
m

(Φ(x0)−min Φ).
As ∑

i

κ2
i = H2(κ)− 2σ2(κ),

we obtain a bound on the principal curvatures. The proof of Theorem 6 is complete. �

The curvature estimate in Theorem 6 also holds for a general class of Riemannian
ambient spaces [12].

4. Appendix

We collect some technical lemmas here.
First is an algebraic lemma [13] regarding the elementary symmetric functions.

Lemma 9. For 1 ≤ k ≤ l, λ = (λ1, ..., λl) and with λi ≥ 0, for 1 ≤ i ≤ l, ∀α 6= β and
for all real numbers γ1, ..., γl,∑

α

σk(λ|α)σl−1(λ|α)σk−1(λ|α)γ2
α

≥ σl(λ)
∑
α 6=β

(σ2
k−1(λ|αβ)− σk(λ|αβ)σk−2(λ|αβ))γαγβ.(4.1)
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Proof: For fixed α,∑
β 6=α
{λβσ2

k−1(λ|αβ)− λβσk(λ|αβ)σk−2(λ|αβ)}

=
∑
β 6=α

[σk−1(λ|αβ)σk(λ|α)− σk(λ|αβ)(σk−1(λ|αβ) + λβσk−2(λ|αβ))]

=
∑
β 6=α

[σk−1(λ|αβ)σk(λ|α)− σk(λ|αβ)σk−1(λ|α)]

= σk(λ|α)[(l − k)σk−1(λ|α)− (l − k − 1)σk−1(λ|α)]

= σk(λ|α)σk−1(λ|α).(4.2)

By the Cauchy inequality and (4.2) to prove (4.1), as

σl(λ) = λαλβσl−2(λ|αβ), ∀α 6= β,

we have

σl(λ)
∑
α,β
α 6=β

[σ2
k−1(λ|αβ)− σk(λ|αβ)σk−2(λ|αβ)]γαγβ

=
∑
α,β
α 6=β

{σl−2(λ|αβ)[σ2
k−1(λ|αβ)− σk(λ|αβ)σk−2(λ|αβ)]}(λβγα)(λαγβ)

≤
∑
α,β
α 6=β

{σl−2(λ|αβ)[σ2
k−1(λ|αβ)− σk(λ|αβ)σk−2(λ|αβ)]}

λ2
βγ

2
α + λ2

αγ
2
β

2

=
∑
α,β
α 6=β

σl−2(λ|αβ)λβ[σ2
k−1(λ|αβ)− σk(λ|αβ)σk−2(λ|αβ)]λβγ

2
α

=
∑
α

σl−1(λ|α)
∑
β,β 6=α

λβ[σ2
k−1(λ|αβ)− σk(λ|αβ)σk−2(λ|αβ)]γ2

α

=
∑
α

σk(λ|α)σl−1(λ|α)σk−1(λ|α)γ2
α.

This completes the proof of (4.1). �

The following corollary [11] indicates certain convexity of the k-th elementary sym-

metric functions in Γn, in contrast to the concavity property of σ
1
k
k which was used in the

proof of C2 estimate for admissible solutions.

Corollary 10. For λ = (λ1, · · · , λl) ∈ Rl with λj > 0,∀j = 1, · · · , l, for 1 ≤ k ≤ l,
set η(λ) = log σk(λ). Then∑

α,β

∂2η

∂λα∂λβ
(λ)γαγβ +

∑
α

∂η

∂λα
λ−1
α γ2

α ≥ 0, ∀γ = (γ1, · · · , γl) ∈ Rl.(4.3)
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Proof. By Lemma 9,

σl(λ)σ2
k(λ)

(∑
α,β

∂2η

∂λα∂λβ
(λ)γαγβ +

∑
α

∂η

∂λα
λ−1
α γ2

α

)
=
∑
α

[σk(G)σl−1(G|α)σk−1(G|α)− σl(G)σ2
k−1(G|α)]γ2

α

+σl(λ)
∑
α,β
α 6=β

[σk(λ)σk−2(λ|αβ)− σk−1(λ|α)σk−1(λ|β)]γαγβ

=
∑
α

σk(λ|α)σl−1(λ|α)σk−1(λ|α)γ2
α

+σl(λ)
∑
α,β
α 6=β

[σk(λ|αβ)σk−2(λ|αβ)− σ2
k−1(λ|αβ)]γαγβ

≥0.

�

The next is a refined concavity property of σ2 ([9, 12]).

Lemma 11. Let W (x) = (Wij(x)) be a 2-symmetric tensor on a Riemannian manifold
M , suppose that p ∈M , W (p) is diagonal, 0 ≤ σ2(W (x)) ∈ C1 in a neighborhood of point
p, and σ1(W (p)) 6= 0. For each m = 1, ..., n, denote

Wm(p) = (∇mW11(p), · · · ,∇mWnn(p)).

then at p,

−σ2(Wm,Wm) ≥ min{−2
∇mσ2(W )∇mσ1(W )

σ1(W )
+ 2

(∇mσ1(W ))2σ2(W )

σ2
1(W )

, 0}.(4.4)

and

−σ2(Wm,Wm) ≥ min{−2
∇mσ2(W )∇mσ1(W )

σ1(W )
+

(∇mσ2(W ))2σ2(I, I)

σ2
2(W, I)

, 0}.

Proof. We first prove
Claim: Suppose that W,V satisfy σ1(W ) 6= 0, σ2(W ) ≥ 0 and σ2(V,W ) = 0, then
σ2(V, V ) ≤ 0.

We may assume σ1(W ) > 0 by switching W to −W if necessary. The claim follows
from the hyperbolicity of σ2 in Γ2 (see [8]) if σ2(W ) > 0. The degenerate case σ2(W ) = 0

can be dealt as follow. Set Wε = W + εI and Vε = V − εσ1(V )I
σ1(W )+εσ2(I,I) . Since σ1(W ) > 0,

∀ε > 0, Wε ∈ Γ2 and σ2(Wε, Vε) = 0. By the hyperbolicity of σ2 in Γ2, σ2(Vε, Vε) ≤ 0. The
claim follows by taking ε→ 0.

Denote Wm = (∇mWii) and ∇mσ2(W ) = (σ2(W ))m. If σ2(W (p)) = 0, then at p, we
have 0 = (σ2(W ))m = σ2(Wm,W ). By the assumption and the claim, σ2(Wm,Wm) ≤ 0
at p.
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If σ2(W (p)) > 0, we have W (p) ∈ Γ2. Set, V = Wm − σ2(W,Wm)
σ2(W,I) I. So, σ2(W,V ) = 0.

By Garding [8] σ2(V, V ) ≤ 0, that is ,

0 ≥ σ2(V, V ) = σ2(Wm,Wm)− 2
σ2(W,Wm)σ2(Wm, I)

σ2(W, I)
+
σ2

2(W,Wm)σ2(I, I)

σ2
2(W, I)

.

As σ2(W,Wm) = ∇mσ2(W ) and σ2(Wm, I) = (n− 1)∇mσ1(W ),

−σ2(Wm,Wm) ≥ −2
∇mσ2(W )∇mσ1(W )

σ1(W )
+

(∇mσ2(W ))2σ2(I, I)

σ2
2(W, I)

.

This fulfills the second inequality. Now let’s prove the first inequality. At point p, If

σ1(Wm) = 0, then σ2(Wm,Wm) ≤ 0. Suppose now σ1(Wm) 6= 0, let V = Wm − σ1(Wm)
σ1(W ) W ,

then σ1(V ) = 0, thus σ2(V, V ) ≤ 0, i.e.

0 ≥ σ2(V, V ) = σ2(Wm,Wm)− 2
σ1(Wm)σ2(Wm,W )

σ1(W )
+
σ2

1(Wm)σ2(W,W )

σ2
1(W )

.

In turn,

−σ2(Wm,Wm) ≥ −2
∇mσ1(W )∇mσ2(W )

σ1(W )
+ 2

(∇mσ1(W ))2σ2(W )

σ2
1(W )

.

The lemma is now proved. �

The next lemma is due to Nirenberg-Treves [24].

Lemma 12. Let f ≥ 0 be a C2 function on a Riemannian manifold M , then if ∂M 6= ∅,

(4.5) |∇f(x)|2 ≤
2||f ||C2(M)(1 + d(x, ∂M))

d(x, ∂M)
f(x),∀x ∈M ;

if ∂M = ∅,

(4.6) |∇f(x)|2 ≤ 2||f ||C2(M)f(x),∀x ∈M.

Proof. We may assume f > 0 by working at fε = f + ε for ε > 0 if necessary. For
each point x0, pick any r > 0 such that r < dist(x0, ∂M) if ∂M 6= ∅. Set Br(x0) = {x ∈
M |dist(x, x0) < r}.

Let’s first assume dist2(x, x0) is smooth in Br(x0), Define ρ(x) as follows:

ρ(x) = r2 − dist2(x, x0), x ∈ Br(x0); ρ(x) = 0, otherwise.

Consider function ρ |∇f |
2

f , it is compactly supported in Mn. Thus it must have a

maximum point in Br(x0) and we may assume it is positive. The maximum is attained
interior, as ρ = 0 on ∂Br(x0).

At the maximum point p, let e1 be the direction of gradient of f , i.e. |∇f | = f1, we
have

ρ1

ρ
+

2f11f1

f2
1

− f1

f
= 0.
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Thus

(4.7) ρ
f2

1

f
(p) = 2f11ρ+ ρ1f1 ≤ 2||f ||C2(M)r(1 + r).

That is,

|∇f |2

f
(x0) ≤ 2||f ||C2(M)

1 + r

r
.

If ∂M 6= ∅, let r → dist(xo, ∂M), if ∂M = ∅, let r →∞, the lemma is verified since x0 is
arbitrary, provided that ρ is C1.

Function ρmay not be C1 in general, but it is a Lipschitz function since |∇dist(x, x0)| =
1. As Br(x0) ⊂⊂ M , we may approximate ρ by smooth nonnegative functions ρδ in
C0,1(B̄rδ(x0)) with supp(ρδ) ⊂ B̄rδ with rδ → r and Brδ → Br(x0) as δ → 0. Replace ρ
by ρδ, and repeat the same argument as before, then take δ → 0. �
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